次の認定試験に速く合格する!
簡単に認定試験を準備し、学び、そして合格するためにすべてが必要だ。
(A)to smooth the gradient of the loss function in order to avoid getting trapped in small local minimas
(B)to randomize the trajectory of the neural network parameters during training
(C)to scale the gradient descent step in proportion to the gradient magnitude
(D)to compute the gradient of the loss function with respect to the neural network parameters
(A)model prediction
(B)use case selection
(C)business understanding
(D)data exploration
(E)data preprocessing
(F)model building
(A)compressing large video files
(B)creating a pivot table with monthly costs
(C)detecting objects in video streams
(D)aggregating sales revenue per state
(A)snapshot
(B)My Sticky Note
(C)user summary report
(D)persona
(A)logistic regression
(B)recurrent neural network
(C)support vector machine (SVM)
(D)decision tree
(A)It is the probability of accepting a null hypothesis when the hypothesis is proven true.
(B)It is the probability of accepting a null hypothesis when the hypothesis is proven false.
(C)It is the probability of rejecting a null hypothesis when the hypothesis is proven false.
(D)It is the probability of rejecting a null hypothesis when the hypothesis is proven true.
我々は12時間以内ですべてのお問い合わせを答えます。
オンラインサポート時間:( UTC+9 ) 9:00-24:00月曜日から土曜日まで
サポート:現在連絡