Databricks-Certified-Data-Engineer-Professionalの迅速なアップデート対応
Databricks-Certified-Data-Engineer-Professional試験に変更がございました場合は、現在の試験と一致するよう、瞬時に学習資料を更新することができます。弊社は、お客様に最高、最新のDatabricks Databricks-Certified-Data-Engineer-Professional問題集を提供することに専念しています。なお、ご購入いただいた製品は365日間無料でアップデートされます。
ダウンロード可能なインタラクティブDatabricks-Certified-Data-Engineer-Professionalテストエンジン
Databricks Certificationの基礎準備資料問題集には、Databricks Certification Databricks-Certified-Data-Engineer-Professional試験を受けるために必要なすべての材料が含まれています。詳細は、正確で論理的なものを作成するために業界の経験を常に使用しているDatabricks Certification によって研究と構成されています。
JPNTestでDatabricks Databricks-Certified-Data-Engineer-Professional問題集をチョイスする理由
JPNTestは、1週間で完璧に認定試験を準備することができる、忙しい受験者に最適な問題集を提供しております。 Databricks-Certified-Data-Engineer-Professionalの問題集は、Databricksの専門家チームがベンダーの推奨する授業要綱を深く分析して作成されました。弊社のDatabricks-Certified-Data-Engineer-Professional学習材料を一回のみ使用するだけで、Databricks認証試験に合格することができます。
Databricks-Certified-Data-Engineer-ProfessionalはDatabricksの重要な認証であり、あなたの専門スキルを試す認定でもあります。受験者は、試験を通じて自分の能力を証明したいと考えています。 JPNTest Databricks Certified Data Engineer Professional Exam は、Databricks Certificationの127の問題と回答を収集して作成しました。Databricks Certified Data Engineer Professional Examの知識ポイントをカバーし、候補者の能力を強化するように設計されています。 JPNTest Databricks-Certified-Data-Engineer-Professional受験問題集を使用すると、Databricks Certified Data Engineer Professional Examに簡単に合格し、Databricks認定を取得して、Databricksとしてのキャリアをさらに歩むことができます。
Databricks-Certified-Data-Engineer-Professional試験の品質と価値
JPNTestのDatabricks Certification Databricks-Certified-Data-Engineer-Professional模擬試験問題集は、認定された対象分野の専門家と公開された作成者のみを使用して、最高の技術精度標準に沿って作成されています。
あなたのDatabricks-Certified-Data-Engineer-Professional試験合格を100%保証
JPNTestテスト問題集を初めて使用したときにDatabricks Certification Databricks-Certified-Data-Engineer-Professional試験(Databricks Certified Data Engineer Professional Exam)に合格されなかった場合は、購入料金を全額ご返金いたします。
Databricks Certified Data Engineer Professional 認定 Databricks-Certified-Data-Engineer-Professional 試験問題:
1. A junior data engineer has been asked to develop a streaming data pipeline with a grouped aggregation using DataFrame df. The pipeline needs to calculate the average humidity and average temperature for each non-overlapping five-minute interval. Incremental state information should be maintained for 10 minutes for late-arriving data.
Streaming DataFrame df has the following schema:
"device_id INT, event_time TIMESTAMP, temp FLOAT, humidity FLOAT"
Code block:
Choose the response that correctly fills in the blank within the code block to complete this task.
A) delayWrite("event_time", "10 minutes")
B) withWatermark("event_time", "10 minutes")
C) slidingWindow("event_time", "10 minutes")
D) await("event_time + `10 minutes'")
E) awaitArrival("event_time", "10 minutes")
2. The data governance team is reviewing code used for deleting records for compliance with GDPR. They note the following logic is used to delete records from the Delta Lake table named users.
Assuming that user_id is a unique identifying key and that delete_requests contains all users that have requested deletion, which statement describes whether successfully executing the above logic guarantees that the records to be deleted are no longer accessible and why?
A) No; the Delta Lake delete command only provides ACID guarantees when combined with the merge into command.
B) No; files containing deleted records may still be accessible with time travel until a vacuum command is used to remove invalidated data files.
C) Yes; the Delta cache immediately updates to reflect the latest data files recorded to disk.
D) Yes; Delta Lake ACID guarantees provide assurance that the delete command succeeded fully and permanently purged these records.
E) No; the Delta cache may return records from previous versions of the table until the cluster is restarted.
3. A data pipeline uses Structured Streaming to ingest data from kafka to Delta Lake. Data is being stored in a bronze table, and includes the Kafka_generated timesamp, key, and value. Three months after the pipeline is deployed the data engineering team has noticed some latency issued during certain times of the day.
A senior data engineer updates the Delta Table's schema and ingestion logic to include the current timestamp (as recoded by Apache Spark) as well the Kafka topic and partition. The team plans to use the additional metadata fields to diagnose the transient processing delays.
Which limitation will the team face while diagnosing this problem?
A) New fields cannot be added to a production Delta table.
B) Updating the table schema will invalidate the Delta transaction log metadata.
C) New fields not be computed for historic records.
D) Updating the table schema requires a default value provided for each file added.
Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from
E) Spark cannot capture the topic partition fields from the kafka source.
4. In order to prevent accidental commits to production data, a senior data engineer has instituted a policy that all development work will reference clones of Delta Lake tables. After testing both deep and shallow clone, development tables are created using shallow clone. A few weeks after initial table creation, the cloned versions of several tables implemented as Type 1 Slowly Changing Dimension (SCD) stop working. The transaction logs for the source tables show that vacuum was run the day before.
Why are the cloned tables no longer working?
A) The data files compacted by vacuum are not tracked by the cloned metadata; running refresh on the cloned table will pull in recent changes.
B) The metadata created by the clone operation is referencing data files that were purged as invalid by the vacuum command
C) Running vacuum automatically invalidates any shallow clones of a table; deep clone should always be used when a cloned table will be repeatedly queried.
D) Because Type 1 changes overwrite existing records, Delta Lake cannot guarantee data consistency for cloned tables.
E) Tables created with SHALLOW CLONE are automatically deleted after their default retention threshold of 7 days.
5. A data engineer wants to reflector the following DLT code, which includes multiple definition with very similar code:
In an attempt to programmatically create these tables using a parameterized table definition, the data engineer writes the following code.
The pipeline runs an update with this refactored code, but generates a different DAG showing incorrect configuration values for tables.
How can the data engineer fix this?
A) Convert the list of configuration values to a dictionary of table settings, using table names as keys.
B) Convert the list of configuration values to a dictionary of table settings, using different input the for loop.
Get Latest & Actual Certified-Data-Engineer-Professional Exam's Question and Answers from
C) Load the configuration values for these tables from a separate file, located at a path provided by a pipeline parameter.
D) Wrap the loop inside another table definition, using generalized names and properties to replace with those from the inner table
質問と回答:
質問 # 1 正解: B | 質問 # 2 正解: B | 質問 # 3 正解: C | 質問 # 4 正解: B | 質問 # 5 正解: A |